Кейс «Мониторинг делового кредитного портфеля банка с помощью трехмерной визуализации. Игры банков: кейсы геймификации на финансовом рынке

Продвижение банковских продуктов и формирование потребности в них.

“ Геймификация – один из самых популярных на данный момент в маркетинге трендов. И нам, как банку с активной и продвинутой аудиторией, было логично его поддержать, предложив клиентам акцию, где игровая механика реализована на должном технологическом уровне и в значительной степени персонифицирована.”
— Кирилл Бобров, вице-президент Тинькофф Банка по привлечению клиентов

В результате, многие пользователи получают первый опыт заработка процента на деньгах, которые просто лежат в банке. Клиенты на собственном опыте понимают, что накопительный счет – это простой и выгодный продукт. А это - первый шаг к открытию депозита или вклада, и к расширению представления о банковских продуктах в целом.

Косвенным результатом также является регулярное использование пользователем онлайн-банка, так как только там можно увидеть свой прогресс.

Причем, результат достигается косвенно с помощью игровых механик, подается в виде истории про активный образ жизни, что намного интереснее определенной аудитории, чем возможность копить и получать проценты (это предлагает любой банк) или призыв пользоваться онлайн-банком.

“ Геймификация - это супер тема. Это всё - вовлечение. Скучно делать транзакции в банке, скучно пользоваться банковскими продуктами. А люди любят конкурировать, люди любят соперничать. Это сидит внутри и очень глубоко. И можно эксплуатировать эти качества людей. Как это сделать в банке? Кейсов мало. Но моё глубокое убеждение - тот, кто научится активно вовлекать своих клиентов, в том числе используя геймификацию, тот cможет заработать много денег.”
— Иван Пятков, Директор департамента дистанционного обслуживания и продаж Банка Москвы
  • Повышение финансовой грамотности пользователей, чтобы упростить восприятие сложных банковских продуктов: депозитов, инвестиций и т.д.
  • Типичные подходы:

    1. Программы лояльности с начислением баллов, миль и кеш-бека в качестве наград.
    2. Интерактивное контекстное обучение новым функциям. Велком-сценарии.
    3. Квесты и конкурсы для клиентов.
    4. Создание простых полезных сервисов с элементами игры: PFM, накопление на цели.
    5. Вирусные промо-игры, сообщающие о новых продуктах в развлекающей форме.

    На прошедшем в пятницу первом форуме FinMachine директор департамента моделирования рисков Сбербанка Максим Еременко и глава R&D в области Data Science Андрей Черток рассказали как в крупнейшем банке страны с помощью машинного обучения среди прочего генерируют исковые заявления и находят бизнес-парнеров своим клиентам.

    Кейс 1. Умные советы: генерация на основе анализа карточных транзакций клиентов
    Максим Еременко : На данный момент мы вполтную подошли к проблеме детектирования и последующего прогноза паттернов поведения владельцев карт. Анализируя активность кардхолдеров, мы эти паттерны научились определять.

    Андрей Черток : В рамках участия в одном из проектов банка мы детектируем паттерны поведения клиентов банка по его транзакциям. Первые модели были связаны с дескриптивным анализом транзакционного поведения. Например, у клиента не было покупок, связанных с авто - они появились. Значит, он купил машину, и теперь можно, например, предлагать такому клиенту продукты или услуги, полезные для автовладельцев.

    Следующая задача - предсказывать те или иные события, в том числе сам факт покупки. В дополнение к паттернам, с появлением тех или иных MCC-кодов становится возможным вытаскивать из данных достаточно интересные истории, в том числе связанные с накопительной деятельностью владельцев карт. То есть мы видим, кто из клиентов банка копит деньги и предупреждаем те или иные крупные покупки. Это может значительно усиливать модели. Банк может дать больший спектр предложений. Вместе с тем это означает, что такие модели должны постоянно адаптироваться.

    На слайде мы видим три достаточно понятных кейса: покупка авто, ремонт в квартире/покупка мебели и затраты на лечение. Особенно ценно, если от клиента возможна обратная связь по предлагаемым ему продуктам. Потому необходимо делать модели, способные учитывать эту обратную связь. Во многом это тот же принцип, что лежит в основе моделей reinforcement learning, которые мы сейчас начинаем разрабатывать.

    Reinforcement learning или обучение с подкреплением, которое сейчас развивают, в том числе, OpenAI и DeepMind - это предвестник ИИ, каким его хотят видеть. В систему заранее не закладывают какой-либо модели мира, и о нем система фактически ничего не знает. Система начинает взаимодействовать с миром, получать обратную связь, так называемые reward’ы. После чего система корректирует свое поведение на основании того, насколько хорошие или плохие reward’ы получены. В случае с банковскими продутками reward - это, например, то, насколько интересным или неинтересным для клиентов оказывается то или иное предложение банка.

    Используя методы с определенными свойствами, обеспечивающими применение reinforcement learning, мы можем адаптировать эти алгоритмы в режиме реального времени. Из новых подходов можно ещё отметить, что буквально недавно в Nature выходила статья того же DeepMind, где они рассказывают о том, как в нейросеть внедрили элементы машины Тьюринга. В результате нейросеть получила возможность обладать памятью, которой нейросетям на данном этапе не хватает.

    Кейс 2. Оптимизация воронки продаж
    Андрей Черток : В этом кейсе мы анализируем транзакционную активность, ищем кластеры клиентов с определенными паттернами поведения. Но в этом случае не связываем их с предсказанием каких-либо событий. Мы, например, можем найти клиентов, которые часто совершают перелеты, поездки за границу и часто конвертируют валюты. Исходя из этого, эффективнее делаем предложения таким клиентам.

    На слайдах показано, какие паттерны мы можем находить и какие продукты в этом случае можем предлагать. В целом понятная история - здесь предполагаются определенные методы, связанные с кластеризацией. Проекция данных, например.

    Кейс 3. Оптимизация наличного денежного обращения
    Андрей Черток :Сбербанк имеет широкую сеть банкоматов, отделений, и схему по работе с корпоративными клиентами. Соответственно, возникает задача спрогнозировать завтрашний спрос на наличность. Чем точнее мы сделаем этот прогноз, тем, скажем так, аккуратнее сможем распределить эти деньги. С одной стороны, важно, чтобы деньги не лежали без дела в банкоматах, а вместо этого мы могли разместить их на краткосрочном депозите. С другой стороны, мы стремимся избежать репутационных потерь - деньги заканчиваются раньше, чем планировалось, и банкомат перестает работать, а клиент остается недовольным.

    Здесь нужны модели, способные работать с несимметричными ошибками. Первые модели очень простые и основаны на классических методах анализа временных рядов, связанных с их сглаживанием. Сейчас же требуются более точные подходы и уже активно используются методы машинного обучения. Естественно подобные методы должны быть адаптивными, так как спрос зависит как от макроэкономических факторов, так и от таких параметров, как расположение банкоматов в городе и прогноза погоды. Объединение разнородных фич дает более существенный результат, чем использование прочих моделей машинного обучения.

    Кейс 4. Моделирование вероятности дефолта для малого бизнеса в режиме реального времени
    Максим Еременко : В 2014 году все говорили по Big Data. В 2015 году disruptive и on the edge стало машинное обучение. В этом году главным трендом было глубинное обучение. В следующем году, очевидно, будут говорить про reinforcement learning.

    В отличие от трех предыдущих трендов, reinforcement learning легко попробовать на открытых платформах. Open artificial intelligence, финансируемая Элоном Маском, и платформа DeepMind обучаются на компьютерных играх с помощью открытыго API по которому можно влезть в код игры.

    Мы получаем битву двух алгоритмов. Если в 80-90-х мы играли в Пакмена, то теперь машина управляет им и этот алгоритм можно модифицировать. DeepMind по этому пути пошли несколько дальше и совместно с Blizzard построили алгоритм для StarCraft.яя

    Алгоритмы тренируют таким образом, чтобы рационализировать их для вполне прикладных задач. В дальнейшем их можно будет эффективно натравливать на задачи, связанные, к примеру, с переводом текстовой информацией в вектора.

    Подобные задачи - это основа движка Google Word2vec, осуществляющий перевод из текстовой информации в вектор, поиск и весь семантический разбор текста, на котором он базируется.

    Но сам кейс немного о другом. Мы просмотрели активных клиентов нашего портфеля в сегментах B2B и B2C, обращая особенное внимание на представителей малого бизнеса, активно обменивающихся платежами. И при работе с ними попробовали отказаться от классического кредитного скоринга, от анализа финансовой отчетности и проведения качественной экспертизы рисков относительно репутации бенефициара, менеджеров и тому подобных параметров. Вместо этого мы начали использовать некую агрегированную метрику, опираясь исключительно на транзакции, - по сути, делать аналитический скоринг, на основе данных, имеющихся в распоряжении банка.

    В результате выяснилось, что модель, базирующаяся на кредитном скоринге, ранжирующем клиентов по вероятности дефолта, практически ничем не отличается по количественной метрике точности от классических моделей. Gini у нее практически такой же на уровне 60-65%. Но если собственную информацию банка обогатить внешними данными, скажем, из соцсетей и использовать их для ранжирования, то можно дополнительно повысить точность.

    На практике это означает, что не надо тратить время на оценку рисков с точки зрения классического анализа. Можно обработать те данные, которые есть в системе, и получить статистически столь же релевантную метрику качества.

    Такую модель сейчас можно использовать только для формирования перечня предодобренных предложений. Если же клиент говорит: «ок, я согласен», - то процесс более сложный. Со временем, если мы увидим, что качество потока сохранялось на текущем или более высоком уровне, а модель покажет более предсказательную точность, то ее можно будет использовать как некую альтернативу.

    Кейс 5. Natural Language Processing алгоритмы для анализа и генерации исковых заявлений
    Максим Еременко : В рамках применения инструментов работы с текстом или Natural Language Processing мы столкнулись с тем, что Сбербанк достаточно большое количество человеческих и временных ресурсов тратит на анализ исковых заявлений и подготовку ответной части. Вместе с тем разбор большей часть информации истцов, и самих исковых заявлений в адрес Сбербанка, можно автоматизировать. Не использовать труд людей, которые вбивают информацию о паспортных данных в резолютивной части искового заявления, а можно все это: дату рождения, паспортные данные, реквизиты и резолютивную часть экстрагировать. На втором этапе, для подготовки ответной части исков, в качестве оптимизации мы предложили использовать определенный шаблон.

    Кейс 6. Определение B2 B- и B2 B-цепочек
    Максим Еременко : Для активных B2B-пользователей можно делать не только оценку кредитного риска, но и подбирать типовые паттерны его партнера. Если мы видим в портфеле компании со схожей профилем экономической деятельности, при этом обе относятся примерно к одной и той же когорте, то есть это не крупный инвестиционный и малый бизнесы, то мы, основываясь на этих паттернах, подбираем партнеров и рекомендуем какие именно отношения могут быть им интересны.

    Кейс 7. Алгоритмы для чатбота @SberbankML_Bot
    Максим Еременко : Наш чат-бот пока только учится, но какие-то вещи, которые уже многие умеют делать, например, проброс через API, к открытым источникам типа «Википедии», он также выполняет. Если вы спросите его, кто такой Греф или Путин, он ответит.

    У нас есть внутреннее обязательство перед нашими боссами, что к лету 2017 года бот будет в состоянии вести беседу на банковскую тематику, плюс будет иметь базовые когнитивные способности и сможет поддерживать общение на отвлеченные темы. На данный момент бот базируется в Telegram, но мы уже ведем разработку собственного мессенджера [куда он будет перемещен].



    Кейс 8. Наши алгоритмы могут не только самообучаться, но и писать стихи
    Максим Еременко: Это более развлекательный проект. Мы взяли рекуррентную нейронную сеть, основанную на стихах Пушкина, Лермонтова и немного на Jira-чате самих разработчиков, и обучили систему писать стихи. Сначала она не хорошо справлялась даже с четырехстопным ямбом, но потом даже рифма стала появляться есть. Сейчас ему удается писать стихи даже про Сбербанк.

    Игра делает любой процесс более простым и увлекательным. Именно поэтому все больше появляется приложений, основанных на геймификации. В игре пользователи получают новые знания, вырабатывают полезные привычки или, наоборот, избавляются от вредных.

    Зачем банкам и платежным системам геймификация?

    «Геймификация» – это, по сути, система мотивации и стимулирования. В советское время была доска почета, на которой размещались фотографии лучших работников (о стимулировании покупателей в то время речи не шло). Сейчас намного больше возможностей сделать систему мотивации интересной, увлекательной, нелинейной. Именно ее превращение в игру и есть геймификация.

    Геймификация призвана увлечь пользователя, человек будет стремиться к новым достижениям. Важно, чтобы этот путь был наглядным. Например, пользователь не просто получает новый статус в приложении, а видит движение к нему, понимает, что должен для этого сделать. Все это с красивой графикой.

    Мозг человека всегда стремится к упрощению. Поэтому мы быстрее беремся за понятные для нас дела, а сложные откладываем на потом. Геймификация – это один из способов упрощения, снижения дискомфорта.

    С кем можно играть?

    Деятельность мозга не зависит от социальной роли. Поэтому геймификация работает как с клиентами, так и с сотрудниками. Сейчас в компании все больше приходит специалистов поколения Y. Для них подписанный договор – это не самый весомый повод для самоотверженной работы, а финансовое поощрение не всегда включает мотивацию на полную.

    Работа должна увлекать, сотрудники хотят развития и самостоятельности. Поэтому игра может начинаться уже при найме сотрудника и в дальнейшем использоваться для повышения мотивации.

    И, конечно, геймификация помогает выстроить отношения с клиентами, повысить их лояльность, сформировать привычку использовать конкретную услугу или товар. Именно в игре можно пользователя ненавязчиво подвести к целевому действию. На этой аудитории и остановимся, причем применительно к финансовой сфере.

    Долгие годы считалось, что банкам и финансовым организациям нужно создавать и поддерживать имидж серьезных компаний, они категорически не допускают шуток. Только в том случае клиенты доверят им свои деньги. Но ситуация изменилась: финансисты тоже используют геймификацию.

    Цели геймификации

    1. Привлечь новых пользователей

    Одно дело, когда вы рассказываете о преимуществах продукта и совсем другое, если приглашаете пользователя принять участие в игре.

    Кейс

    В прошлом году «Рокетбанк» проводил онлайн-квест с отсылками к СССР. Пользователи могли выиграть iPhone 7, испанский хамон или французские сладости макаруны. Участникам надо было выполнить 12 заданий, за которые начисляются баллы и ставятся печати в виртуальный талон. Часть из них была связана с распространением информации о «Рокетбанке» в социальных сетях. И одно из заданий - «Партийный билет» - предполагало подачу заявки на выпуск карты «Рокетбанка».

    Таким образом, участники квеста, играя, сами повысили узнаваемость банка, расширили его аудиторию и между делом стали клиентами.

    2. Помочь разобраться в продукте

    Финансовые продукты часто достаточно сложны, пользователю нужно и объяснять саму услугу, и дать инструкцию по ее применению.

    Кейс

    Нидерландский Robobank привнесли элемент игры в довольно сложный и запутанный процесс получения ипотечного кредита. Для этого заемщику нужно пройти путь, для него определены конкретные шаги и только после их выполнения открывается следующий уровень и активируется значок нового действия.

    3. Повышение финансовой грамотности

    Многие банковские и платежные сервисы заботятся не только о том, чтобы клиенты знали их продукт, но и повышают их финансовую грамотность. Часто вопросы о защите от мошенников и принятии финансовых решений используются при геймификации.

    Кейс

    В Америке есть программа вознаграждения SaveUp. У пользователей поощряются правильные и эффективные действия, связанные с финансами. Причем это не программа лояльности какого-то конкретного банка, в нее включены пользователи более 180 тысяч американских финансовых институтов.

    Баллы, например, засчитываются тогда, когда пользователь вносит средства на пенсионный счет или депозит, погашает задолженность по ипотечным кредитам, кредитным картам и другого рода займам. Кроме того, потребители принимают участие в финансовых образовательных курсах на ресурсе SaveUp. Баллы можно обменять на шанс выиграть призы.

    4. Повысить активности пользователей и предложить новые услуги

    Люди не заходят на платежный сервис от скуки или просто потому, что появилась свободная минутка. Нужно заплатить - пользователь открывает приложение, совершает платеж и уходит. Но при таком подходе клиент даже может не знать всех возможностей сервиса. Например, он понял, что удобно оплачивать услуги ЖКХ, приходит раз в месяц и совершает платеж. Пока ТСЖ или УК не выставит следующую квитанцию, пользователь может и не вернуться на сервис.

    Кейс

    У платежной системы «Центральная касса» есть большая группа пользователей, отличающаяся от других аудиторий - таксисты. Они получают оплату от пассажиров, которые расплачивались банковской картой, на электронный кошелек. Часть из них просто переводили полученные деньги на свои карты. На этом взаимодействие с платежной системой заканчивалось.

    Поэтому перед бизнесом встала задача : научить таксистов использовать приложение для оплаты услуг. Для этого запустили игру. Таксисты принимали оплату за поездки, получали бонусы и оплачивали услуги диспетчерской без комиссии.

    Еще кейс

    Альфа-банк запустил сервис Alfa Activity. Банк предложил пользователям автоматически перечислять деньги в «копилку» пропорционально пройденным шагам. Для этого надо было связать учётную запись фитнестрекера с интернет‑банком. Результаты отображались на специальной шкале, чтобы пользователю было понятно, на что он уже накопил.

    И еще один

    Американский банк PNC не стал придумывать длинный и сложный квест. Просто на экране у пользователя, находящегося в интернет-банке, появляется свинка-копилка. При нажатии на нее, средства переводятся на накопительный счет. Причем периодичность и сумму платежей клиент настраивает самостоятельно.

    5. Программа лояльности

    Мы открываем кошелек и что видим? Большое количество скидочных карт, многие уже не носят их все с собой. Поэтому обычной программой лояльности никого не удивить. Пользователи часто даже отказываются от вступления в нее.

    Кейс

    Оживить бонусную программу вновь поможет геймификация. Испанский банк BBVA запустил онлайн-сервис BBVA Game. Клиент получает баллы за выполнение определенных действий, например, за проведение онлайн-платежей. Баллы можно обменивать на призы, оплачивать музыкальные и видеоролики на сайте-партнере BBVA. Кроме баллов, пользователь получает медали («бейджи»), которые отображаются на странице его профиля.

    Но важно помнить, что бизнесу не стоит запускать просто игру ради самой игры. Цель геймификации – сделать интереснее взаимодействие с компаний, покупку ее услуг и использование функционала. Только в таком случае игра поможет добиться бизнес-целей и повысить лояльность.

    Финансовый симулятор помогает людям взглянуть на работу банка изнутри

    В закладки

    Представители банка «Хоум Кредит» рассказали редакции сайт о том, как компания разработала онлайн-игру «Сам себе банкир», которая позволяет игрокам почувствовать себя в роли директора банка. Благодаря симулятору, аудитория может понять, как именно работает финансовая организация, что позволяет вовлечь ее в бренд.

    Идея разработать финансовую онлайн-игру появилась в банке в 2015 году. Компания поставила перед собой цель заинтересовать людей банковским делом, вовлечь в бренд, и в игровой форме рассказать об основных принципах работы банка.

    «Опыт показывает, что люди охотнее взаимодействуют с тем, что они понимают. А наша игра дает людям возможность взглянуть на банк изнутри: игроки сами определяют, как работал бы "их" банк, а потом система автоматически высчитывает прибыль или убыток», - рассказывает директор департамента маркетинга и маркетинговых коммуникаций банка «Хоум Кредит» Мария Бурак.

    Управление банком разделено на девять сфер (кредитные продукты, риски, клиентский сервис и так далее). Выбирая пункт меню, игрок должен либо ответить на вопрос, либо установить значения финансовых показателей.

    После того, как пользователь определит политику организации, система рассчитает, насколько успешным окажется банк, и как много игроку удастся заработать (или потерять).

    Игра запустилась в середине 2016 года. С момента открытия в ней поучаствовали более 32 тысяч человек. «Изначально мы рассчитывали, что к концу 2016 года игру пройдут не менее 10 тысяч человек. В итоге мы превысили наши изначальные планы более чем в три раза», - отмечает Бурак.

    По словам директора департамента маркетинга, около 20% игроков сыграли несколько раз, пытаясь улучшить свой результат. Аудиторию составили клиенты банка, подписчики его групп в соцсетях, люди, которые пришли по репосту других игроков, а также сотрудники банка.

    «У онлайн-игры нет призового фонда и компания не платила за продвижение. Игроки привлекались через сайт и официальные сообщества банка в соцсетях. Еще мы делали рассылку с предложением сыграть в "Сам себе банкир" клиентам и сотрудникам нашего банка», - отмечает она.

    По словам Бурак, таким образом банк решает сразу несколько важных задач: привлекает интерес к бренду, повышает информированность и финансовую грамотность игроков, а также вовлекает их в игровой процесс.


    Мария Бурак директор департамента маркетинга и маркетинговых коммуникаций банка «Хоум Кредит»

    У нас не было задачи рекламировать продукты банка. Мы хотели поменять отношение людей к банковскому бизнесу в целом - рассказать о целях и задачах, объяснить, как банки достигают своих результатов. Это больше относится к имиджевой стороне вопроса, чем к продажам продуктов.

    Идея, модель, визуальная концепция игры - все было придумано и разработано внутри банка. Привлеченное агентство только нарисовало и запрограммировало квест. Прототипом создания онлайн-квеста стала настольная игра-тренинг, также созданная сотрудниками нашего банка.

    Она тоже называется «Сам себе банкир». Ее игровая механика гораздо сложнее: играть нужно командами в несколько раундов. Полное прохождение настольной игры-тренинга занимает от нескольких часов до целого дня. В онлайн-версии добиться результата можно гораздо быстрее: за несколько минут. Стоит отметить, что внутри игры мы никак не продвигаем продукты банка «Хоум Кредит».

    Кстати, за время существования игры у нее появились и собственные рекордсмены. Игру можно проходить неограниченное количество раз. Один человек сыграл 127 раз, получал и прибыль, и убыток. Он установил абсолютный рекорд - 42 209 768 000 рублей, который пока не побит, хотя несколько человек смогли приблизиться к нему вплотную и «заработали» 42 135 451 000 рублей.

    В марте 2017 года к нам обратился, наверное, самый трудный клиент за все время существования нашего сервиса, который представлял интересы одного крупного банка, который имеет немалую сеть отделений по всей России. Мы всегда рады любым клиентам, но в этот раз нашим специалистам пришлось столкнуться с типичной банковской бюрократией, каковой, ни у одного нашего клиента нам встречать доселе не приходилось. Впрочем, нельзя не отметить тот факт, что трудности, которые мы испытали при работе с этим банком имели своё объяснение – такая серьезная организация не могла вносить изменения на своем сайте, не обдумав каждое из предложенных нами.

    Ниже мы подробнее распишем все трудности, с которыми мы столкнулись при сотрудничестве с айтишниками и менеджментом банка и то, как мы подняли трафик сайта в более чем два раза за 7 месяцев.

    Первое знакомство

    Первое знакомство с сайтом (и сотрудниками PR-отдела банка) у нас состоялось в марте 2017 года. На тот момент сайт имел весьма неплохую посещаемость из поисковиков, благодаря тому, что сам банк и домен на тот момент существовали уже около 10 лет и всё это время пиарщики этого финучреждения активно работали с целевыми интернет-площадками и оффлайн рекламой, что дало сайту траст и в будущем очень помогло нам при раскрутке.

    Прямым результатом многолетней работы пиарщиков банка стало то, что на сайт было проставлено очень много естественных ссылок, что вкупе со старым доменом смогло несколько сгладить тот факт, что внутренней оптимизацией сайта никто не занимался.

    Также, банк имел достаточное количество филиалов в регионах России, что отразилось на структуре его сайта, работа с которой, также, должна была занять определенное время.

    Работа над сайтом

    SEO-аудит сайта

    Аудит сайта мы начали с того, что устроили ему проверку на наличие дублей страниц и мета-тегов. В нашей практике постоянно встречаются сайты с дублированными страницами, мета-тегами или контентом, и сайт банка не стал исключением. Достаточно грамотно сделанный с точки зрения безопасности движок наплодил несколько десятков дублей страниц и еще больше страниц с дублированными мета-тегами Title и Description (как пример, у раздела и у страниц раздела были одинаковые заголовки и описания страниц, что с точки зрения внутренней оптимизации, вообще, нонсенс).

    Проверив сайт на дубли, пришла пора заняться поиском ошибок в контенте. К чести копирайтеров и пиарщиков банка, таковых почти не было обнаружено. «Почти» означает, что основные ошибки, которые были нами найдены, касались либо плохого форматирования текста, либо отсутствия заголовков, либо отсутствующих мета-тегов для изображений. Все замечания по каждой из страниц были нами внесены в рабочий файл для последующего обсуждения изменений с представителями заказчика.

    Также, на сайте не была замечена ставшая обоснованно популярной в последние годы микроразметка «хлебные крошки». Для сайта банка, на котором есть несколько разделов и подразделов, наличие такой разметки хоть и не является обязательным требованием, но, тем не менее, крайне желательно.

    Последним пунктом в списке ошибок у нас был пункт про плохую внутреннюю перелинковку между страницами. Несмотря на то, что некоторые страницы так и просились, чтобы их соединили ссылками друг с другом, на деле, ничего подобного контент-менеджерами банка проделано не было.

    На этом с ошибками SEO-оптимизации на сайте мы закончили.

    Технический аудит

    С технической стороной оптимизации сайта всё вышло куда как печальнее, ибо, как мы писали выше, довольно сильный с точки зрения безопасности движок был весьма слаб с точки зрения оптимизации. В том числе и технической.

    Первое, что мы проверили – это скорость загрузки. Она, к сожалению, оставляла желать лучшего. Нет, сайт, конечно, грузился, но вполне ощутимо уступал по скорости сайтам конкурентов. К этому привело два фактора: тяжеловесные изображения на сайте и наличие в шаблоне некоторых модулей, которые тормозили загрузку.

    Второй момент, на который обратили внимание наши сеошники – это отсутствие файлов robots.txt и sitemap.xml в корневой директории сайта. После некоторых уточнений у админов банка, оказалось, что их нет вообще. Что же, добавляем еще один пункт в рабочий файл для последующей беседы с клиентами.

    Третий пункт – это поиск всех исходящих ссылок со страниц сайта и анализ каждой из них. В основном, найдены были битые ссылки (как на внутренние страницы сайта, так и на внешние сайты).

    Четвертым «косяком» клиентского портала была некачественная адаптивная верстка. Было замечено, что при работе с сайтом на смартфонах, съезжали некоторые блоки и вылезали прочие ошибки. Что характерно, на планшетах всё было нормально.

    Пятым пунктом у нас значилась проверка страниц сайта на «вес» (говоря проще, чтобы на сайте не было таких страниц, код которых превышал бы 200 килобайт). Забегая наперед, скажем, что такие страницы были найдены и даже оперативно (по сравнению с остальными пунктами) пофиксены админами банка в сторону уменьшения «веса».

    На этих пяти пунктах проблемы технического характера были исчерпаны, и мы перешли к составлению семантического ядра.

    Семантическое ядро

    Создание семантического ядра под существующие страницы у нас началось с того, что была создана структура сайта, начиная с главной страницы и заканчивая страницами второго уровня вложенности. Под каждую из страниц мы сгруппировали несколько релевантных высоко- и среднечастотных запросов, часть из которых уже была в той или иной форме размещена на них, а остальные требовалось разместить.

    Процесс сбора ключевых фраз мы начали с анализа контента на сайте наших клиентов, потом переключились на сбор семантики с похожих страниц сайтов-конкурентов и закончили составление ядра запросов основательно поработав с сервисами по сбору ключевых слов. Таким образом, у нас на руках было несколько сотен актуальных и конкурентных ключевиков, которые надо было разместить на страницах банка, предназначенных для физических и юридических лиц, и еще оставалось несколько перспективных групп запросов, под которые можно было создать дополнительные страницы.

    Работы по внутренней оптимизации

    Проведя два аудита и составив семантическое ядро сайта, наши специалисты в связке с айтишниками и менеджерами банка приступили к работам над сайтом.

    Первое, над чем мы вместе поработали – это исправление технических ошибок. Легче всего далось увеличение скорости загрузки сайта. Объемные изображения были нами оптимизированы в Photoshop, что в почти два раза снизило их итоговый размер, а тормозящие работу сайта модули были частично убраны, частично переписаны самими айтишниками банка. В итоге, клиентский сайт по скорости загрузки стал равняться сайтам крупнейших российских банков. Так же быстро мы решили проблему отсутствия файла robots.txt и карты сайта: инструкции для поисковых ботов мы в виде файла отправили айтишникам банка по почте и в тот же день увидели этот файл на сайте. От написания отдельного модуля для карты сайта в банке отказались, предпочтя бесплатное решение от одного из онлайн-сервисов.

    Несколько сложнее пошли дела с удалением исходящих ссылок с сайта. Несмотря на то, что их было мало, процесс затянулся где-то на неделю. Почему так – не знаем. Впрочем, пока в банке удаляли указанные нами ссылки, мы сами успели сделать качественную адаптивную верстку под смартфоны, которую в банке тестировали еще неделю.

    Таким образом, за две недели нам удалось разобраться с техническими проблемами сайта и перейти непосредственно к работе над контентом.

    Работа над контентом началась с того, что клиент наотрез отказался от создания новых страниц на сайте, предпочтя оставить старую структуру. Поэтому нам оставалось только составить детальные рекомендации для PR-менеджеров банка, следуя которым, они должны были бы менять контент на каждой из страниц или удалять дубли страниц. По сути, все рекомендации свелись к тому, какие ключевики и в каком количестве надо было прописать в самом тексте и обсуждению того, как должны были выглядеть мета-теги Title и Description (мы выше писали, что они дублировались) и теги H1-H3.

    По той же схеме мы действовали и в случае с ручной перелинковкой страниц сайта между собой – просто отправляли рекомендации по тому, на какой странице нужно поставить ссылку и анкор с URL для ссылки.

    Этот процесс занял еще около двух недель, пока все согласования с изменением контента на сайте проходили цепочку от нас и до ответственных менеджеров банка. К слову, к подавляющему большинству наших рекомендаций в банке прислушались и поменяли контент так, как мы им сказали.

    Коммерческие факторы

    Отдельно от всего остального, нами были проанализированы коммерческие факторы на сайте банка. Из плюсов – на сайте уже была встроена функция обратного звонка и чата с оператором службы поддержки, а также для каждого депозитного и кредитного предложения имелся собственный калькулятор. Из минусов – с операторами службы поддержки невозможно было связаться при помощи популярных мессенджеров, а на странице «Контакты» не было встроенной карты от Яндекс или Google с расположением банка. Большей частью эти минусы были устранены уже после выполнения основных работ по сайту.

    Также, с нашей подачи, сотрудниками банка была убрана устаревшая информация про это финучреждение в Яндекс.Справочнике и Google Мой бизнес и внесена актуальная.

    Заключение

    На скриншоте Яндекс.Метрики ниже видно, насколько нам удалось поднять посещаемость сайта и за какое время.

    Изначально счетчик метрики был установлен админами сайта в декабре 2016 года (на скриншоте этого не видно). Далее, 2,5 месяца метрика просто считала статистику, и уже с конца марта (как мы и написали выше) наша команда взялась за работу над сайтом. На наш взгляд, результат мог быть куда лучше, если бы не постоянные согласования всех наших действий с менеджерами банка, работа сотрудников банка над исправлением ошибок, согласования сделанного ими с нашими сотрудниками и тому подобное. В итоге, процесс, который мог занять от силы две недели, растянулся на полтора месяца (если не больше). С другой стороны, понять топ-менеджеров банка тоже можно – они просто не имеют права допустить для работы над сайтом посторонних людей, предпочтя довериться своим айтишникам.

    На сегодняшний день единственным результатом проведенных над сайтом работ является, как мы уже и говорили, только увеличение трафика в 2,3 раза. Данных по увеличению клиентской базы у нас нет.

     
    Статьи по теме:
    Лидеры и аутсайдеры Какие страны относятся к аутсайдерам
    15-02-2010 13:18 Страны-аутсайдеры получили прозвище PIGS (свиньи) Появившаяся с легкой руки экономистов Goldman Sachs аббревиатура , объединяющая потенциальных экономических лидеров, стала обрастать клонами. Для потенциальных аутсайдеров - Португалии,
    Комиссия по градостроительству, государственной собственности и землепользованию
    1. Комиссия по землепользованию и застройке (далее - Комиссия) создается в целях подготовки Правил землепользования и застройки в соответствии с Градостроительным Земельным кодексами Российской Федерации, а также для решения следующих задач: Рассмотрение
    Что такое сборные конструкции?
    Унифицированные, заводского изготовления конструкции. Сборные конструкции в строительстве, конструкции, собираемые (монтируемые) из готовых элементов, не требующих дополнительной обработки (обрезки, подгонки и пр.) на месте строительства. Элементы сборны
    Устойчивость и надежность банка
    2.2 Анализ депозитных операций ПАО «Сбербанк России» Привлечение средств частных клиентов и обеспечение их сохранности остаются основой бизнеса ПАО «Сбербанк России» привлекает средства в срочные депозиты, вклады до востребования, включая банковские карты